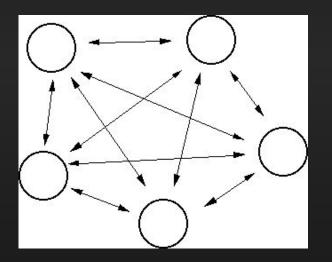
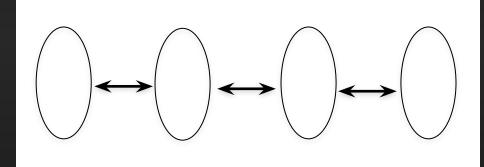
The Genetics of Colonization: Evidence for a Recent Range Expansion in *Hyla cinerea*

Paola Dolcemascolo, Montclair State University Karena DiLeo, NJ Division of Fish and Wildlife, Endangered and Nongame Species Program


The Genetics of Colonization

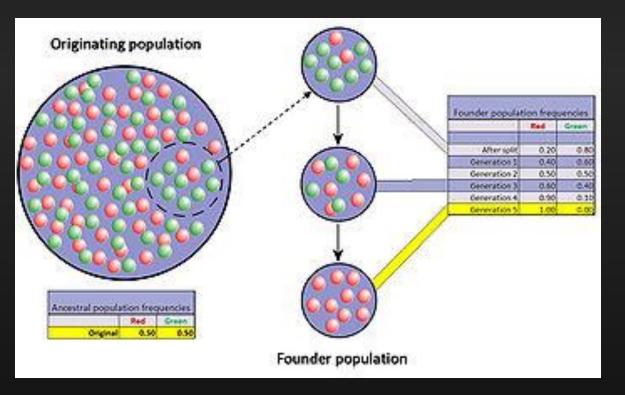
- Understanding the genetics of colonization is important for a variety of reasons:
 - Speciation
 - Migration patterns
 - Invasion biology
 - Determination of genetic front and geographic location

- Do introduced individuals all originate from the same source? Is it possible to determine that source?


The Genetics of Colonization

- Traditionally, 2 models:
- Infinite island

- Diminished founder effect


• Stepping stone

- Potentially strong founder effect

The Genetics of Colonization

• Decrease in genetic diversity indication of colonization event (Wright 1942, Mayr 1954, 1963, 1970, 1976, 1982, Austerlitz et al. 1997, Excoffier 2009, Frankham 1997, Stone and Sunnucks 1993, Johnson 1988, Klopfstein 2005, LeCorre 1998, Slatkin 1987, Templeton 1980, 1998)

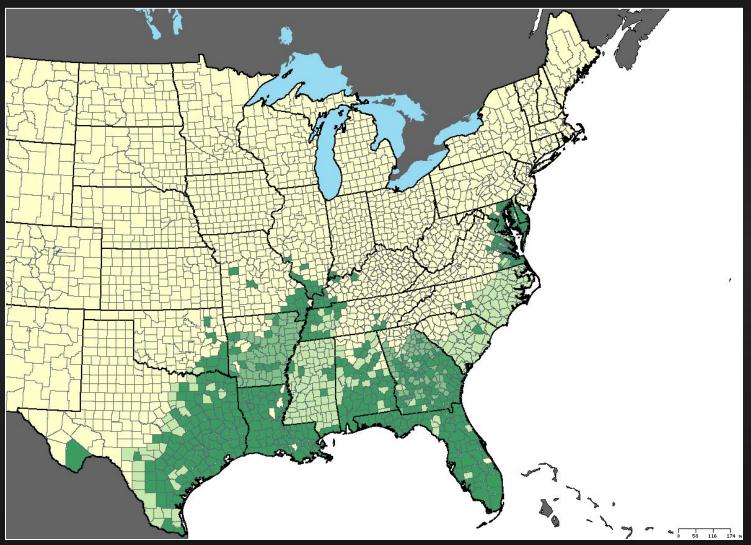
- Due mainly to founder effect in stepping stone model (Templeton 1980, Slatkin 1987)

Examination of actual, recent range expansions to determine what is biologically realistic

The American Green Tree Frog (*Hyla cinerea*)

• SVL of 32-64 mm (1.25 to 2.5")

- Lateral stripe white or yellow, variation within and between populations
- Diet indiscriminate and opportunistic feeder (insects, snails, spiders)


- Habitat: tidal marshes, ponds, lakes, swamps, with emergent vegetation
- Frequently found around humans; use eaves of buildings as retreats, found around house lights foraging for insects
- Popular in pet trade

The American Green Tree Frog (H. *cinerea*)

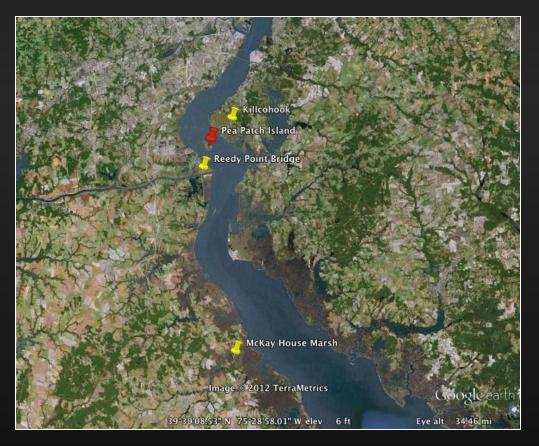
Geographic Distribution (2005)

http://www.nwrc.usgs.gov/sc_armi/frogs_and_toads/hyla_cinerea.htm

Killcohook National Wildlife Refuge...New Jersey

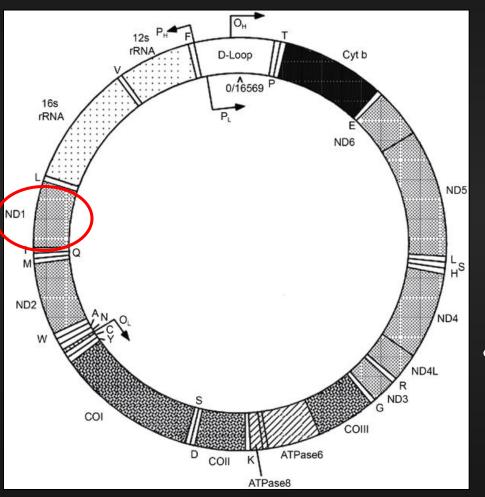
- Initially located by its loud chorus, then confirmed through individual ID
- Freshwater tidal marsh along the Delaware River
 - Other species present, Leopard Frog *spp*. and Bullfrog

Objectives

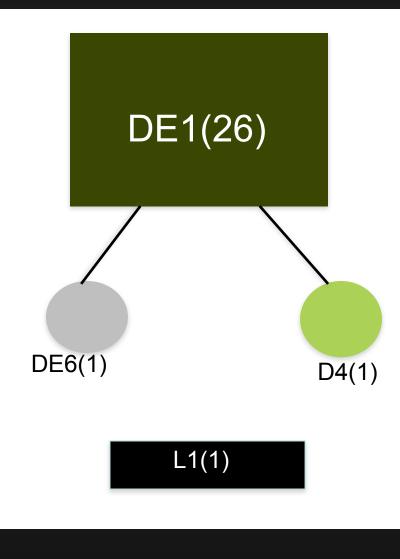

1. To determine the most likely source population for the *Hyla cinerea* that colonized New Jersey

2. To begin to document the current range of *Hyla cinerea* in New Jersey

• Toe clips for DNA from Killcohook site and 2 sites in Delaware


Methods

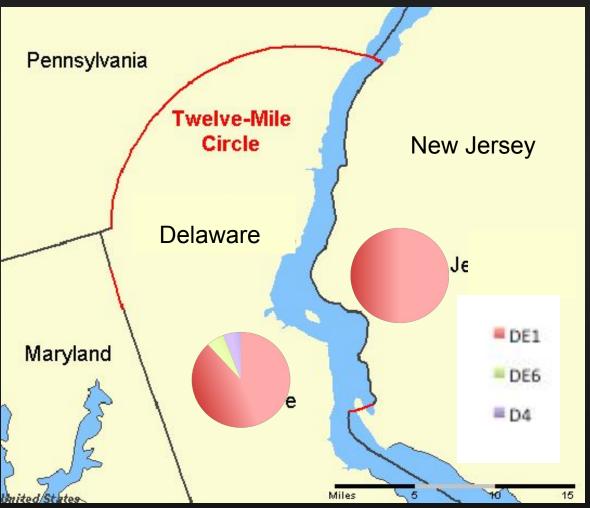
- DNA extraction via alkaline lysis and silica spin column using QIAmp DNA Mini Kit (QIAGEN)
- PCR, Sequence analysis on ABI sequencer



Methods

- Mitochondrial DNA was used because it evolves faster than nuclear DNA
 - specifically, the ND1 locus was used
- 486 base pairs used for analysis
- 29 sequences (11 from NJ, 17 from DE, one from LA) aligned using MUSCLE (http://www.ebi.ac.uk/Tools/services/ web/toolform.ebi?tool=muscle)

Results - TCS



 Statistical parsimony network --> graphical representation of relationship among sequences

 4 haplotypes, with all NJ samples being identical to DE1 sequence

- Most common haplotype is DE1
- Louisiana sequence (from GenBank) --> unrelated

Estimates of Genetic Diversity

- Fst = -0.025
- Mean number of pairwise differences = 1.310 (+/- 0.840)
- Average gene diversity over loci = 0.003 (+/-0.002)
- Haplotype diversity = 0.200 (+/- 0.098)

• S= 19

Results - CLUSTALW2

DE1	GTATTATACAAACCATACCTGATTATTATGACTTAGTCTCAATAAACACTCAACCTATT 180
DE6	GTATTATACAAACCATACCTGATTATTTATGACTTAGTCTCAATAAACACTCAACCTATT 180
D4	GTATTATACAAACCATACCTGATTATTTATGACTTAGTCTCAATAAACACTCAACCTATT 180
Ll	GTATTATGCAAACCATACCCGATTATTTATGACCTAGTCTCAATAAACACTCAACCTACT 180

DE1	ATTTCCCTCAAGACAAGACTAGTTAATGTAGCAAAATCTGGTTTTGCAAAAGACCT-AAA 239
DE6	ATTTCCCTCAAGACAAGAGTAGTTAATGTAGCAAAATCTGGTTTTGCAAAAGACCTAAAA 240
D4	ATTTCCCTCAAGACAAGAGCAGTTAATGTAGCAAAATCTGGTTTTGCAAAAGACCT-AAA 239
L1	ACCTCTCTCAAGACAAGACTAGTTAATGTAGCAAAATCTGGTTTTGCAAAAGACCC-AAA 239

DE1	CCCTTTCTATAGAGGTTCAAATCCTCTCATTAACTTTGAACCTAGTCCAACTTATTCTCC 299
DE6	CCCTTTCTATAGAGGTTCAAATCCTCTCATTAACTTTGAACCTAGTCCAACTTATTCTCC 300
D4	CCCTTTCTATAGAGGTTCAAATCCTCTCATTAACTTTGAACCTAGTCCAACTTATTCTCC 299
L1	CCCTTTCTATAGAGGTTCAAATCCTCTCATTAACTTTGAACCTAATCCAACTCATTCTTC 299

DE1	CCCTTTTATATATTGCTCCGATCCTTCTTGCAGTTGCCTTCCTCACCCTTATTGAACGCA 359
DE6	CCCTTTTATATATTGCTCCGATCCTTCTTGCAGTTGCCTTCCTCACCCTTATTGAACGCA 360
D4	CCCTTTTATATATTGCTCCGATCCTTCTTGCAGTTGCCTTCCTCACCCTTATTGAACGCA 359
Ll	CCCTTTTATATATTGCCCCGATCCTTCTTGCAGTTGCCTTCCTCACCCTTATTGAACGCA 359

DE1	AAGTGCTTGGTTATATACAACACCGCAAAGGCCCCCAACGTAGTCGGCCCCCACAGGCCTCC 419
DE6	AAGTGCTTGGTTATATACAACACCGCAAAGGCCCCCAACGTAGTCGGCCCCCACAGGCCTCC 420
D4	AAGTGCTTGGTTATATACAACACCGCAAAGGCCCCCAACGTAGTCGGCCCCCACAGGCCTCC 419
L1	AAGTGCTTGGCTATATACAACATCGCAAAGGCCCCCAACGTAGTCGGCCCCACAGGCCTTC 419

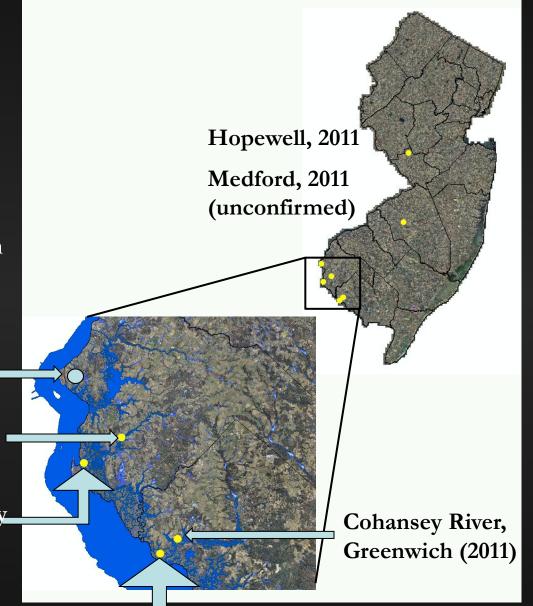
DE1	TTCAGCCAATCGCTGATGGGGGTAAAACTTTTCATTAAAGAACCCATCCGACCATCAAATT 479
DE6	TTCAGCCAATCGCTGATGGGGTAAAACTTTTCATTAAAGAACCCATCCGACCATCAAATT 480
D4	TTCAGCCAATCGCTGATGGGGTAAAACTTTTCATTAAAGAACCCATCCGACCATCAAATT 479
Ll	TTCAACCAATCGCTGATGGAGTAAAACTCTTCATTAAAGAACCCATCCGACCATCAAATT 479

 Aligned 4 unique haplotypes using CLUSTALW2 (http://www.ebi.ac.uk/Tools /msa/clustalw2/) to visualize 19 polymorphic sites

• Arrows represent loci that differ between L1 and all other sequences

• Rectangles represent loci that differ between DE sequences

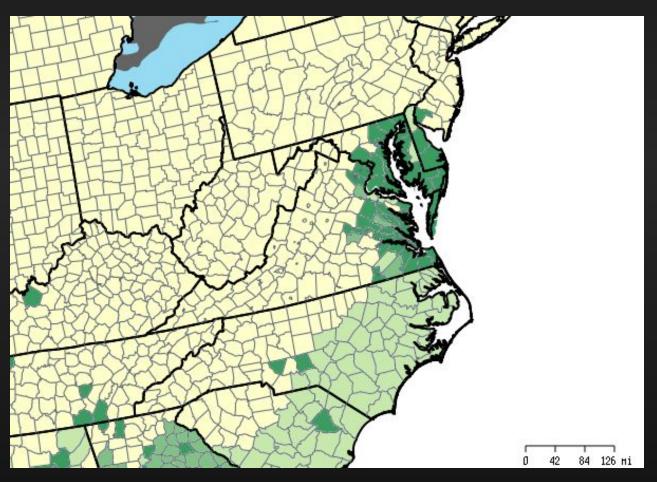
Results of Range Survey


- Local Reports and Acoustic Surveys
- Awaiting results of 2012 Calling Amphibian Monitoring Program (CAMP)

Killcohook (2011, 2012)

Alloway Creek, Quinton (2011)

Alloway Creek, PSE&G property (2012)


Cohansey River, PSE&G property (2012)

Conclusions and Significance

• DE population possible source for NJ Hyla cinerea

http://www.pwrc.usgs.gov:8080/mapserver/naa/

(created 6/18/2012)

Genetic impoverishment in newly colonized population predominant haplotype from founding population

Genetic
impoverishment and
F*st* that is essentially
zero suggests very
recent colonization

Climate Change and Amphibians

- Models predict significant climate-induced changes in amphibian species composition in central and eastern US
- Amphibian susceptibility to regional climate changes due to:
 - dependence on microhabitat
 - dependence on hydrology
 - limited dispersal ability
 - Earlier calling phenology of frogs documented in New York state --> species calling 10-13 days earlier over the past 100 years

Climate Change and Amphibians

- *H. cinerea* most recent range expansion --> Illinois, moved 110 km north of previous northernmost population in central US
- NOAA climate data show:

- temperature in NJ has already increased an average of 2°F since 1900, with winter temps increasing 4°F since 1970

- rainfall has also increased 5-10%

- predicted 2°-8°F increase in temperature will see regional climate of southern NJ comparable to current climate of DE

Conclusions and Significance

• Genetic distinctness at periphery (and therefore in colonized population as well) could represent evolutionary potential

- How to treat species that cross political boundaries?
- Monitor colonization?

Implications for Native Species and Ecosystems

- Florida --> natural hybrids between *H. cinerea* and *H. andersonii*
 - hybrids showed no developmental abnormalities but were infertile
 - 2 consecutive years of drought may have limited suitable breeding habitat
 - *H. cinerea* known to hybridize with *H. gratiosa* --> no known current population in NJ
 - No records of hybridization with *H. chrysoscelis* or *H. versicolor*
- *H. cinerea* has demonstrated dietary plasticity outside of native range

Future Directions

- Requesting museum specimens of *Hyla cinerea* collected throughout its range in order to understand species-wide diversity
- Obtain DNA from other NJ populations, to determine whether all NJ *Hyla cinerea* are from the same source
- Calling surveys to understand the extent of *Hyla cinerea* range in NJ
- Use nuclear DNA markers to explore patterns not present in mtDNA

Acknowledgements

• Holly Niederriter, Non-game Wildlife Biologist, Natural Heritage and Endangered Species Program, DNREC

 David M Golden Acting Regional Superintendent, Bureau of Land Management, NJ Div Fish & Wildlife

> • Dr. Kirsten Monsen-Collar, PhD advisor, Montclair State University

> > • Kim Korth and the NJ Endangered and Nongame Species program